

NORAI

North AI: Canada’s Sovereign Platform for AI-Accelerated Scientific Discovery

Semanttica Web Technologies (SWT) Inc.

Version 2.0 – December 2025

Contents

Executive Summary	5
1 The Strategic Imperative	6
1.1 The Global AI-for-Science Race	6
1.2 The Cost of Inaction	6
1.3 Canada’s Unique Opportunity	6
2 Made-in-Canada Value Proposition	7
2.1 Economic Impact	7
2.2 Keeping Value in Canada	7
2.3 Canadian Company Opportunities	7
2.4 Talent Retention and Development	7
3 Platform Architecture	8
3.1 Layer 1: National Semantic Layer	8
3.2 Layer 2: Federated Data Lakehouse	8
3.3 Layer 3: Secure Multi-Party Compute Enclave	8
3.4 Layer 4: Borealis Model Family	8
3.5 Layer 5: NORAI Studio	8
4 Year 1 Prototype Priorities	9
4.1 Computome - The National Compute Gateway	9
4.2 Federated Data Catalog	9
4.3 Consent-as-Code (OCAP Platform)	9
4.4 Provincial Data Sharing Protocol	9
4.5 Critical Minerals AI	9
4.6 PermafrostGPT	9
4.7 Privacy-Preserving Health Analytics	9
4.8 NORAI Data Gateway - Unified Open Science API	9
4.9 Compute Queue Predictor & Optimizer (Quick Win)	11
4.10 BorealisChat - Bilingual Scientific Assistant (High Visibility)	11
4.11 Carbon-Aware Compute Scheduler (Climate Win)	11
4.12 Grant Writing Assistant (High Demand)	11
4.13 Research Impact Tracker	11
4.14 Cross-Institutional Collaboration Matcher	12

4.15	World-Leading Innovations (Priorities 15-21)	12
4.16	Arctic Digital Twin (Borealis-Earth) - WORLD FIRST	12
4.17	Autonomous Materials Discovery Lab (Self-Driving Science) - LEAPFROG	13
4.18	Indigenous AI Governance Platform (CARE/OCAP Automation) - WORLD FIRST	13
4.19	Canadian Scientific Foundation Model (Borealis-Science) - SOVEREIGN AI	14
4.20	Federated Genomics Network - PAN-CANADIAN HEALTH	14
4.21	Borealis-Scholar - AI Research Agent - OPEN ALTERNATIVE	14
4.22	Quantum-Classical Science Bridge - QUANTUM ADVANTAGE	14
4.23	Year 1 Prototype Summary	16
4.24	Core Infrastructure Prototypes (Priorities 1-14)	16
4.25	World-Leading Innovations (Priorities 15-21)	16
4.26	Combined Year 1 Investment	16
5	World-Leading Innovation Technical Specifications	17
5.1	Arctic Digital Twin (Borealis-Earth)	17
5.2	Autonomous Materials Discovery Lab	18
5.3	Indigenous AI Governance Platform	18
5.4	Borealis-Science Foundation Model	18
5.5	Federated Genomics Network	18
5.6	Borealis-Scholar AI Research Agent	20
5.7	Quantum-Classical Science Bridge	20
6	Technical Architecture	22
6.1	System Architecture Overview	22
6.2	Data Flow Architecture	22
6.3	Security Architecture	22
6.4	API Architecture	22
6.5	Technology Stack	22
7	Five-Year Roadmap (2026-2030)	23
7.1	Phase 1: Foundation (2026)	23
7.2	Phase 2: Expansion (2027)	23
7.3	Phase 3: Integration (2028)	23
7.4	Phase 4: Acceleration (2029)	24
7.5	Phase 5: Leadership (2030)	24
7.6	Total 5-Year Investment: \$1.4B	24
7.7	ROI Projections	24
8	Data Governance and Sovereignty	25
8.1	Principles	25
8.2	OCAP Implementation	25
8.3	Compliance Framework	25
9	Open Science Integration	26
9.1	The Problem: Fragmented Data Landscape	26
9.2	Canadian Open Science Platforms Inventory	26
9.3	The NORAI Data Gateway: Unified API Wrapper	27
9.4	API Wrapper Specifications	27
9.5	Platform Adapter Examples	29
9.6	Data Propagation & Synchronization	29
9.7	Benefits for AI Model Development	29
9.8	Implementation Roadmap	29

9.9 Open Source Commitment	29
10 Canadian AI Ecosystem	31
10.1 National AI Institutes (Proposed Partnerships)	31
10.2 National Compute Infrastructure (Proposed Partnerships)	31
10.3 Research Universities (Proposed Partnerships)	31
10.4 Federal Research Organizations (Proposed Partnerships)	31
10.5 Industry Ecosystem	31
11 Multi-Stakeholder Alignment	32
11.1 Federal Stakeholder Mapping	32
11.2 Provincial Alignment	32
11.3 Indigenous Partnership Framework	32
12 Funding and Economic Impact	33
12.1 Federal Budget Context (2024-2025)	33
12.2 NORAI Funding Alignment	33
12.3 Annual Budget Allocation	33
12.4 Cost Efficiency Analysis	33
12.5 Economic Multiplier Effects	33
12.6 Job Creation by Region	33
12.7 Revenue Model (Post-2028)	33
13 Why NORAI	35
13.1 Differentiators vs. US Genesis	35
13.2 Canadian Competitive Advantages	35
13.3 Risk Mitigation Summary	35
14 Risk Assessment and Mitigation	36
14.1 Competitive Landscape Analysis	36
14.2 Technology Risks	36
14.3 Execution Risks	37
14.4 Governance Structure	37
14.5 Intellectual Property Strategy	37
14.6 Security & Threat Model	37
15 Addressing Stakeholder Concerns	39
15.1 Provincial Governments	39
15.2 Research Universities	39
15.3 Industry Partners	39
15.4 Indigenous Communities	39
15.5 Federal Departments	39
16 Call to Action	41
16.1 The Choice	41
16.2 Immediate Next Steps	41
16.3 The Ask	41
16.4 Contact	41
References	43

Executive Summary

The United States launched the Genesis Mission on 25 November 2025 to double the productivity of American science within a decade using closed-loop AI on sovereign data and supercomputers. Canada cannot afford to watch from the sidelines.

NORAI is the Made-in-Canada answer: a fully sovereign, bilingual, Indigenous-consent-aware AI-for-science platform that integrates Canadian scientific datasets, laboratories, and supercomputers from coast to coast to coast under one secure national fabric.

Canada doesn't need to copy Genesis. Canada needs to build something Genesis cannot replicate: a platform with Indigenous data governance (OCAP), bilingual by design, privacy-preserving federation across provinces, and exportable to allied nations.

Built and operated in Canada by Canadian companies, NORAI will:

- **Create 1,000+ direct jobs** and 3,000+ indirect jobs over 5 years
- **Redirect \$500M+/year** currently flowing to US cloud providers back into Canadian infrastructure
- **Retain AI talent** by providing compelling domestic opportunities
- **Enable \$33B+ in economic value** across critical minerals, health, climate, and energy sectors (23x ROI)

We are not asking for permission to start - we are asking for partnership to mobilize Canadian talent and build sovereign AI infrastructure.

1. The Strategic Imperative

1.1 The Global AI-for-Science Race

Nation	Initiative	Compute Commitment	Investment
United States	DOE Genesis Mission	200 MW dedicated	\$3B+
China	New Generation AI 2030	3 closed-loop platforms	Est. \$10B+
European Union	EuroHPC + AI4Science	5 exascale systems	EUR 8B
Canada	Fragmented efforts	No integrated platform	Fragmented

Table 1: Global AI-for-Science Initiatives

1.2 The Cost of Inaction

- Canadian scientists waste **40-60%** of their time on data wrangling instead of discovery
- Research talent migration to US institutions accelerating post-Genesis announcement
- **\$500M+/year** flows to US cloud providers for AI workloads
- Critical sectors (climate, health, energy) lack integrated AI infrastructure
- Indigenous data sovereignty concerns remain unaddressed

1.3 Canada's Unique Opportunity

Canada doesn't need to match Genesis dollar-for-dollar. Canada needs to build capabilities Genesis **cannot replicate**:

Capability	Genesis (US)	NORAI (Canada)
Indigenous data governance	None	OCAP-native (world first)
Bilingual platform	No	EN/FR/Inuktitut-ready
Provincial federation	N/A	Privacy-preserving across 13 jurisdictions
Export to allies	Unlikely	Five Eyes, EU, Francophone nations
Open science ethos	DOE-controlled	FAIR principles, open APIs

NORAI closes the gap by building what only Canada can build.

2. Made-in-Canada Value Proposition

2.1 Economic Impact

Metric	Year 1	Year 3	Year 5
Direct jobs	180	480	1,000+
Indirect jobs	540	1,440	3,000+
Canadian company contracts	\$20M	\$100M	\$300M
Compute value unlocked	\$50M	\$150M	\$300M
Research productivity gain	10%	30%	50%

2.2 Keeping Value in Canada

Current State	With NORAI
\$500M+/year to US cloud providers	Redirected to Canadian infrastructure
AI talent emigrating to US	Compelling domestic opportunities
Research data exported for analysis	Processed on sovereign infrastructure
Foreign platforms control access	Canadian-governed, Canadian-controlled

2.3 Canadian Company Opportunities

NORAI creates a platform for Canadian technology companies to compete globally:

Sector	Canadian Companies to Engage
Cloud/Compute	Shopify, OVHcloud (Montreal), IBM Canada, TELUS, Bell
AI/ML	Cohere (Toronto), Sanctuary AI (Vancouver), Untether AI
Cybersecurity	BlackBerry/Cylance, Arctic Wolf, eSentire
Quantum	Xanadu (Toronto), D-Wave (Burnaby), Photonic Inc
Data/Analytics	ThinkData Works, Daisy Intelligence, Coveo
Health Tech	WELL Health, Think Research, MedStack
Indigenous Tech	First Nations Technology Council, Animikii
Geospatial	MDA, Ecopia AI, Geotab

2.4 Talent Retention and Development

Initiative	Impact
Graduate research positions	200+ funded positions across Canadian universities
Industry partnerships	Co-op and internship programs with Canadian companies
Indigenous technology training	Dedicated programs in partnership with Indigenous institutions
Regional development	Positions distributed across provinces, not just Toronto/Montreal

3. Platform Architecture

NORAI implements a five-layer sovereign architecture designed for scientific discovery at national scale.

3.1 Layer 1: National Semantic Layer

Purpose: Unified knowledge representation across all Canadian scientific domains

Component	Specification
Knowledge Graph	50M+ scientific entities (target)
Ontologies	Aligned with FAIR principles, W3C standards
Languages	English, French, Inuktitut-ready
Entity Types	Researchers, publications, datasets, instruments, samples, experiments
Integration	CrossRef, ORCID, DataCite, Canadian institutional repositories

3.2 Layer 2: Federated Data Lakehouse

Purpose: Distributed sovereign data storage with automatic residency enforcement

Component	Specification
Architecture	Delta Lake on object storage (S3-compatible)
Geographic Zones	Montreal, Toronto, Calgary, Vancouver, Yellowknife
Compliance	PIPEDA, provincial health data regulations, OCAP
Capacity	Petabyte-scale per zone, exabyte aggregate
Data Formats	Parquet, Zarr, HDF5, DICOM, FASTA, netCDF

3.3 Layer 3: Secure Multi-Party Compute Enclave

Purpose: Privacy-preserving computation across institutional and jurisdictional boundaries

3.4 Layer 4: Borealis Model Family

Purpose: Science-specialized foundation models trained on Canadian data

3.5 Layer 5: NORAI Studio

Purpose: End-to-end research automation interface

Component	Specification
MPC Framework	OpenMPC with Canadian security extensions
Network Security	SCION-based path-aware networking
Access Control	Consent-as-code governance tokens
Differential Privacy	Configurable ϵ (epsilon) budgets per query
Audit	Immutable computation provenance logs

Model	Parameters	Training Data	Capabilities
Borealis-8B	8 billion	Canadian scientific literature, patents	Text understanding, code generation
Borealis-70B	70 billion	+ multi-modal (images, spectra, time series)	Scientific reasoning, hypothesis generation
Borealis-405B	405 billion	+ closed-loop experimental data	Autonomous experiment design

4. Year 1 Prototype Priorities

4.1 Computome - The National Compute Gateway

Problem: Alliance clusters at 60

4.2 Federated Data Catalog

Problem: Researchers spend 40-60

4.3 Consent-as-Code (OCAP Platform)

Problem: No platform automates Indigenous data governance at scale

4.4 Provincial Data Sharing Protocol

Problem: Cross-provincial research requires 6+ months of legal paperwork

4.5 Critical Minerals AI

Problem: Manual geological analysis; supply chain dependence on foreign sources

4.6 PermafrostGPT

Problem: \$8-12B in northern infrastructure at risk from permafrost degradation

4.7 Privacy-Preserving Health Analytics

Problem: Health research requires centralizing sensitive data (provinces refuse)

4.8 NORAI Data Gateway - Unified Open Science API

Problem: 30+ Canadian open science platforms exist but are siloed; researchers waste 40-60

Component	Specification
Interface	Natural language to experiment design
Automation	Robotic laboratory execution protocols
Provenance	Full experiment lineage tracking
Integration	TRIUMF, Canadian Light Source, Ocean Networks Canada

Aspect	Specification
Solution	Unified gateway + intelligent dispatcher for all Alliance resources
Value	\$50M/year in unlocked compute; keeps AI training in Canada
Stakeholders	Digital Research Alliance, ISED, universities, startups
Deliverables	Dashboard, job dispatcher, queue optimization
Canadian jobs	10-15 software engineers
Aspect	Specification
Solution	Search API federating metadata from StatsCan, NRCAN, ECCC, CIHR
Value	Accelerates every Canadian researcher
Stakeholders	All federal science departments
Deliverables	Search API, web interface, FAIR metadata harvesting
Canadian jobs	15-20 developers, data engineers
Aspect	Specification
Solution	Machine-readable consent policies with community control
Value	World's first - competitive advantage vs. Genesis
Stakeholders	CIRNAC, ITK, AFN, FNIGC
Deliverables	Consent portal, policy engine, audit system
Canadian jobs	Indigenous tech specialists, governance experts
Aspect	Specification
Solution	Automated compliance for PIPEDA + provincial health acts
Value	Enables pan-Canadian health research
Stakeholders	Provincial health ministries, CIHR
Deliverables	Compliance automation, legal templates, workflow system
Canadian jobs	Legal tech, privacy engineers
Aspect	Specification
Solution	AI analysis of satellite + geophysics for deposit identification
Value	\$15B+ export potential
Stakeholders	NRCAN, mining sector, Indigenous communities
Deliverables	Analysis pipeline, probability maps, prospect database
Canadian jobs	Geoscientists, ML engineers, remote sensing
Aspect	Specification
Solution	1-km resolution 10-year forecasts using GSC + satellite data
Value	Infrastructure protection, Arctic sovereignty
Stakeholders	NRCAN, territorial governments, Transport Canada
Deliverables	Forecast system, risk maps, API
Canadian jobs	Climate scientists, infrastructure engineers
Aspect	Specification
Solution	Federated learning with differential privacy
Value	10M+ patient records analyzable without data movement
Stakeholders	Provincial health, BC Cancer, Ontario Health
Deliverables	Federated learning framework, privacy guarantees
Canadian jobs	Privacy engineers, health informatics
Aspect	Specification
Solution	Unified API wrapper federating all Canadian open science platforms with native ML/AI integration
Value	Single interface to 30+ platforms; direct PyTorch/TensorFlow data loading; automatic format conversion
Stakeholders	CONP, Ocean Networks Canada, CADC, Polar Data Catalogue, FRDR, all open science platforms
Deliverables	Python SDK, REST API, platform adapters, data propagation bus
Canadian jobs	20-25 software engineers, data engineers, DevOps
Investment	\$8M Year 1

4.9 Compute Queue Predictor & Optimizer (Quick Win)

Problem: Researchers submit jobs blindly, wait days, jobs fail. Alliance RAC 2024 fulfilled only 43

Aspect	Specification
Solution	ML model predicting wait times across clusters, suggesting optimal submission times and resources, auto-retry for failed jobs
Value	Better utilization of existing \$225M infrastructure; reduced researcher frustration; fewer wasted compute hours
Stakeholders	Digital Research Alliance, all HPC users (10,000+ researchers)
Deliverables	Wait time predictor API, CLI tool, Slurm plugin, dashboard
Canadian jobs	5-8 ML engineers, backend developers
Investment	\$1M Year 1
Timeline	3 months to MVP

4.10 BorealisChat - Bilingual Scientific Assistant (High Visibility)

Problem: No Canadian-specific, bilingual AI assistant for researchers. All use US-based tools (ChatGPT, Claude) with no understanding of Canadian context, Tri-Council requirements, or French scientific literature.

Aspect	Specification
Solution	RAG-based chatbot trained on Canadian scientific literature, government reports, Tri-Council funding guidelines, bilingual (EN/FR)
Value	High visibility "Made in Canada" AI; serves underserved French-speaking research community; demonstrates sovereignty
Stakeholders	All Canadian researchers, ISED, Canadian Heritage (bilingualism mandate)
Deliverables	Web interface, API, Slack/Teams integration, mobile app
Canadian jobs	10-15 ML engineers, NLP specialists, bilingual content specialists
Investment	\$4M Year 1
Timeline	6 months to public beta

4.11 Carbon-Aware Compute Scheduler (Climate Win)

Problem: Alliance clusters at 80

Aspect	Specification
Solution	Route batch jobs to lowest-carbon regions; time-shift non-urgent jobs to low-carbon periods; carbon footprint reporting
Value	20-30% carbon reduction; aligns with federal climate policy; ESG reporting for institutions
Stakeholders	ECCC, Digital Research Alliance, universities, federal science departments
Deliverables	Scheduler plugin, carbon API integration, reporting dashboard
Canadian jobs	5-7 systems engineers, sustainability specialists
Investment	\$1.5M Year 1
Timeline	4 months to production

4.12 Grant Writing Assistant (High Demand)

Problem: Researchers spend weeks writing NSERC/CIHR/SSHRC grants. 70

4.13 Research Impact Tracker

Problem: Canadian researchers can't easily demonstrate impact of publicly-funded research. Tri-Council needs better metrics to justify \$4B+ annual investment.

Aspect	Specification
Solution	AI assistant understanding Tri-Council formats, trained on successful grants (anonymized), reviewer criteria, common pitfalls
Value	Democratizes grant access; saves 40+ hours per application; improves success rates for underserved institutions
Stakeholders	Tri-Council (NSERC, CIHR, SSHRC), universities, early-career researchers
Deliverables	Web application, document analysis, suggestion engine, compliance checker
Canadian jobs	8-12 ML engineers, UX designers, grant specialists
Investment	\$2.5M Year 1
Timeline	4 months to pilot

Aspect	Specification
Solution	Automated tracking of dataset citations, code reuse, downstream discoveries, policy citations, media mentions
Value	Justifies public investment; helps researchers in grant renewals; identifies high-impact research for funding
Stakeholders	Tri-Council, universities, research offices, government
Deliverables	Impact dashboard, researcher profiles, institutional reports, DOI/ORCID integration
Canadian jobs	6-10 data engineers, bibliometrics specialists
Investment	\$2M Year 1
Timeline	3 months to MVP

4.14 Cross-Institutional Collaboration Matcher

Problem: Researchers don't know who else in Canada works on similar problems. Duplicate efforts waste resources. Grant applications weaker without collaborators.

Aspect	Specification
Solution	Knowledge graph of researchers, publications, datasets, grants with AI-powered similarity matching and collaboration recommendations
Value	Enables new collaborations; reduces duplication; strengthens grant applications; builds Canadian research networks
Stakeholders	Tri-Council, universities, research networks, early-career researchers
Deliverables	Researcher discovery portal, collaboration recommendations, research landscape maps
Canadian jobs	5-8 knowledge graph engineers, NLP specialists
Investment	\$1.5M Year 1
Timeline	3 months to beta

4.15 World-Leading Innovations (Priorities 15-21)

The following prototypes position Canada as a global leader in AI for science by building capabilities that no other nation is currently developing at scale.

4.16 Arctic Digital Twin (Borealis-Earth) - WORLD FIRST

Problem: Canada has 40

Aspect	Specification
Solution	First km-resolution digital twin of Canadian Arctic and boreal ecosystems, integrating permafrost, sea ice, wildlife corridors, and infrastructure
Value	Enables predictive infrastructure planning, supports Arctic sovereignty, powers climate adaptation policy
Stakeholders	ECCC, NRCan, DND/CAF, territorial governments, Inuit Tapiriit Kanatami
Deliverables	Interactive 3D visualization, API for simulations, scenario planning tools, policy decision support
Canadian jobs	25-35 climate scientists, visualization engineers, Arctic specialists
Investment	\$12M Year 1
Timeline	12 months to operational prototype
Competitive Position	No equivalent exists globally; positions Canada as Arctic AI leader

4.17 Autonomous Materials Discovery Lab (Self-Driving Science) - LEAPFROG

Problem: US DOE Genesis Mission is building autonomous labs at Argonne/Berkeley. Canada has no equivalent. Manual materials discovery takes 10-20 years per new material. Critical minerals supply chain depends on accelerating discovery.

Aspect	Specification
Solution	Closed-loop AI + robotics lab for critical minerals and clean energy materials - AI designs experiments, robots execute, ML analyzes, loop repeats 24/7
Value	10x faster materials discovery; reduces critical minerals import dependence; positions Canada in global battery/clean energy race
Stakeholders	NRC, NRCan, Canadian Light Source, TRIUMF, mining sector
Deliverables	Physical autonomous lab facility, AI experiment planner, robotic integration, materials database
Canadian jobs	30-40 roboticists, materials scientists, ML engineers, lab technicians
Investment	\$15M Year 1 (facility + equipment + team)
Timeline	12 months to first autonomous discovery cycle
Competitive Position	Matches Genesis Mission capability; first in Canada

4.18 Indigenous AI Governance Platform (CARE/OCAP Automation) - WORLD FIRST

Problem: No platform anywhere automates Indigenous data governance at scale. CARE Principles and OCAP exist as frameworks but require manual implementation. Indigenous communities lack technical tools to enforce data sovereignty.

Aspect	Specification
Solution	Complete technology stack for Indigenous data sovereignty: community-controlled consent portals, automated CARE/OCAP compliance, benefit-sharing smart contracts, data repatriation tools
Value	World's first - exportable to Indigenous communities globally; positions Canada as ethical AI leader; addresses reconciliation commitments
Stakeholders	ITK, AFN, MNC, FNIGC, CIRNAC, Indigenous tech companies (Animikii, FNTC)
Deliverables	Community governance portal, consent workflow engine, benefit-sharing tracker, audit dashboard, training program
Canadian jobs	15-20 Indigenous tech specialists, governance experts, community liaisons
Investment	\$5M Year 1
Timeline	8 months to pilot with 3 communities
Competitive Position	Absolute world first; no equivalent exists; exportable IP

4.19 Canadian Scientific Foundation Model (Borealis-Science) - SOVEREIGN AI

Problem: All scientific AI assistants (GPT-4, Claude, Gemini) are US-based, trained on global data, with no understanding of Canadian context, French scientific literature, or Indigenous knowledge. Canada has no sovereign scientific AI.

Aspect	Specification
Solution	Domain-specific 70B+ parameter foundation model trained exclusively on Canadian scientific corpus, bilingual (EN/FR), with optional Indigenous language support
Value	Sovereign AI capability; serves underserved French research community; demonstrates "Made in Canada" AI; can be exported to Francophone nations
Stakeholders	ISED, NRC, universities, Cohere (potential partner), Canadian Heritage
Deliverables	Pre-trained foundation model, fine-tuning toolkit, API access, integration with NORAI platform
Canadian jobs	40-50 ML researchers, data engineers, linguists, compute infrastructure
Investment	\$20M Year 1 (compute-intensive)
Timeline	12 months to Borealis-Science 70B release
Competitive Position	First national sovereign scientific foundation model; differentiator vs Genesis

4.20 Federated Genomics Network - PAN-CANADIAN HEALTH

Problem: Canada's provincial health system creates data silos. Cancer/genomics research requires combining data across provinces, but privacy laws prevent centralization. No existing platform enables federated genomic analysis at national scale.

Aspect	Specification
Solution	Privacy-preserving federated learning network connecting all provincial cancer registries and genomic databases - analyze 10M+ patient records without any data leaving provincial jurisdiction
Value	Enables pan-Canadian precision medicine research impossible today; 3+ new therapeutic targets; model for global federated health AI
Stakeholders	CIHR, provincial cancer agencies, Genome Canada, Health Canada
Deliverables	Federated learning framework, secure enclaves in each province, genomic analysis pipelines, researcher portal
Canadian jobs	20-25 privacy engineers, health informaticists, genomics specialists
Investment	\$8M Year 1
Timeline	10 months to operational network (3 provinces)
Competitive Position	Largest federated genomics network in the world; leverages Canada's universal healthcare

4.21 Borealis-Scholar - AI Research Agent - OPEN ALTERNATIVE

Problem: FutureHouse and Elicit (US) dominate AI-powered literature synthesis. No open-source, bilingual alternative exists. Canadian researchers use US tools with no Canadian context or French support.

4.22 Quantum-Classical Science Bridge - QUANTUM ADVANTAGE

Problem: Canada has world-leading quantum companies (Xanadu, D-Wave) but no integration with national HPC. Quantum advantage for science requires hybrid classical-quantum workflows. No national platform exists to make this accessible.

Aspect	Specification
Solution	Open-source AI research agent with superhuman literature search and synthesis, trained on Canadian research corpus, fully bilingual, understanding of Tri-Council ecosystem
Value	Reduces literature review from weeks to hours; serves French research community; open-source builds Canadian AI ecosystem
Stakeholders	All Canadian researchers, CARL (Canadian Association of Research Libraries), Érudit
Deliverables	Web application, API, VS Code extension, Zotero integration, open-source codebase
Canadian jobs	12-18 ML engineers, NLP specialists, research librarians
Investment	\$4M Year 1
Timeline	6 months to public beta
Competitive Position	Open-source alternative to US commercial tools; only bilingual option

Aspect	Specification
Solution	First national platform seamlessly connecting quantum processors (Xanadu photonic, D-Wave annealing) with Alliance HPC clusters for hybrid scientific workflows
Value	Democratizes quantum access; accelerates quantum advantage timeline; keeps quantum talent in Canada; first-mover in quantum-HPC integration
Stakeholders	Xanadu, D-Wave, Digital Research Alliance, NRC, universities with quantum programs
Deliverables	Unified API, job scheduler for hybrid workflows, quantum simulation fallback, educational resources
Canadian jobs	15-20 quantum software engineers, HPC specialists
Investment	\$10M Year 1
Timeline	12 months to hybrid workflow demonstrations
Competitive Position	First national quantum-HPC integration; leverages Canadian quantum leadership

4.23 Year 1 Prototype Summary

4.24 Core Infrastructure Prototypes (Priorities 1-14)

Priority	Prototype	Investment	Timeline	Jobs
1	Computome	\$8M	Q1-Q2	10-15
2	Federated Data Catalog	\$6M	Q1-Q3	15-20
3	Consent-as-Code (OCAP)	\$7M	Q2-Q4	10-15
4	Provincial Data Sharing Protocol	\$8M	Q2-Q4	12-18
5	Critical Minerals AI	\$9M	Q2-Q4	15-20
6	PermafrostGPT	\$7M	Q3-Q1	10-15
7	Privacy-Preserving Health Analytics	\$5M	Q3-Q2	8-12
8	NORAI Data Gateway	\$8M	Q1-Q4	20-25
9	Compute Queue Predictor	\$1M	Q1	5-8
10	BorealisChat	\$4M	Q1-Q2	10-15
11	Carbon-Aware Scheduler	\$1.5M	Q1-Q2	5-7
12	Grant Writing Assistant	\$2.5M	Q1-Q2	8-12
13	Research Impact Tracker	\$2M	Q1	6-10
14	Collaboration Matcher	\$1.5M	Q1	5-8
Subtotal	14 Prototypes	\$70.5M		140-200

Quick Win prototypes (9-14) deliver in 3-4 months.

4.25 World-Leading Innovations (Priorities 15-21)

Priority	Prototype	Investment	Timeline	Jobs	Position
15	Arctic Digital Twin	\$12M	Q1-Q4	25-35	World First
16	Autonomous Materials Lab	\$15M	Q1-Q4	30-40	Genesis Parity
17	Indigenous AI Governance	\$5M	Q1-Q3	15-20	World First
18	Borealis-Science Foundation Model	\$20M	Q1-Q4	40-50	Sovereign AI
19	Federated Genomics Network	\$8M	Q1-Q4	20-25	Global Model
20	Borealis-Scholar AI Agent	\$4M	Q1-Q2	12-18	Open Alternative
21	Quantum-Classical Bridge	\$10M	Q1-Q4	15-20	First National
Subtotal	7 World-Leading	\$74M		157-208	

4.26 Combined Year 1 Investment

Category	Prototypes	Investment	Jobs Created
Core Infrastructure	14	\$70.5M	140-200
World-Leading Innovations	7	\$74M	157-208
Total Year 1	21 Prototypes	\$144.5M	297-408

Strategic Breakdown:

- **2 World Firsts** - Capabilities no other nation has built
- **1 Genesis Parity** - Matching US autonomous lab capability
- **1 Sovereign AI** - Canadian foundation model independence
- **6 Quick Wins** - Demonstrable value in 3-4 months
- **1 Global Model** - Template exportable to allies

5. World-Leading Innovation Technical Specifications

5.1 Arctic Digital Twin (Borealis-Earth)

Objective: First km-resolution digital twin of the Canadian Arctic and boreal ecosystems

Aspect	Specification
Spatial Resolution	1 km (Arctic), 250m (infrastructure corridors)
Temporal Resolution	Hourly for weather, daily for permafrost, seasonal for ecosystems
Coverage	4.5 million km ² (all Canadian Arctic and boreal zones)
Forecast Horizon	10-day weather, 10-year infrastructure risk, 2100 climate scenarios

Data Sources:

Source	Data Type	Update Frequency
RADARSAT Constellation	SAR imagery, ice extent	Daily
MODIS/VIIRS	Surface temperature, snow cover	Daily
GSC Borehole Network	Ground temperature, permafrost depth	Continuous
Environment Canada	Weather stations, buoys	Hourly
Polar Data Catalogue	Historical records, research data	As available
Indigenous Knowledge	Traditional observations (with consent)	Seasonal

Model Architecture (Borealis-Earth):

- **Data Ingestion Layer:**

- Satellite data (SAR, Optical)
- Ground Sensors
- Weather Stations
- Indigenous Knowledge Portal

- **Physics-Informed ML Core:**

- Permafrost Model (FourCastNet-based)
- Sea Ice Model (Graph NN)
- Ecosystem Model (Species Distribution)

- **Visualization Engine:**

- 3D Globe (CesiumJS)
- Risk Maps (Mapbox)
- Scenario Explorer

Key Capabilities:

Capability	Description
Infrastructure Risk Scoring	Real-time risk assessment for roads, pipelines, buildings
Shipping Route Optimization	Safe passage planning through Northwest Passage
Wildlife Corridor Modeling	Caribou, polar bear migration predictions
Community Alerts	Early warning system for hazardous conditions
Policy Scenario Testing	"What if" simulations for climate policy decisions

Performance Specifications:

Metric	Target
Simulation speed	10x real-time (1 year in 36 days)
Inference latency	<5 minutes for regional forecast
Storage	2 PB (growing 500 TB/year)
Compute	500 GPU-hours/day continuous operation

5.2 Autonomous Materials Discovery Lab

Objective: Self-driving laboratory for critical minerals and clean energy materials discovery

Aspect	Specification
Lab Type	High-throughput materials synthesis and characterization
Automation Level	A4-A5 (fully autonomous operation with human oversight)
Focus Areas	Battery materials, rare earth alternatives, fusion materials
Throughput	100+ experiments/day (vs. 5/day manual)

Physical Infrastructure:

Component	Equipment	Purpose
Synthesis	Robotic powder handling, furnaces, ball mills	Material creation
Characterization	XRD, SEM, XRF (automated sample loading)	Property measurement
Electrochemistry	Coin cell assembly robot, cycler array	Battery testing
Compute	On-site GPU cluster (8x A100)	Real-time ML inference
Safety	Inert atmosphere glovebox, fire suppression	Safe operation

AI Experiment Planner: Bayesian optimization with physics-informed priors searches chemical space for promising candidates, filters for safety and synthesizability, and proposes experiment plans with estimated times and safety notes. The system learns from each result and updates the materials database.

Integration Points:

5.3 Indigenous AI Governance Platform

Objective: World's first automated platform for Indigenous data sovereignty (CARE/OCAP compliance)

Platform Components:

Consent Workflow:

Benefit Sharing Automation:

5.4 Borealis-Science Foundation Model

Objective: Sovereign Canadian scientific foundation model (70B+ parameters)

Training Data:

Model Capabilities:

Training Infrastructure:

Safety and Alignment:

5.5 Federated Genomics Network

Objective: Pan-Canadian federated learning network for genomics/cancer research

Facility	Integration	Purpose
Canadian Light Source	Beamline scheduling API	High-resolution characterization
TRIUMF	Muon spectroscopy queue	Battery material analysis
NRC-ICPET	Computational validation	DFT cross-validation
Materials Project	Database sync	Global knowledge sharing

Aspect	Specification
Frameworks Supported	OCAP (Canada), CARE Principles (global), Māori Data Sovereignty
Governance Model	Community-controlled with delegated technical administration
Audit	Immutable blockchain-based provenance
Languages	English, French, Inuktitut, Cree, Ojibwe (expandable)

Component	Technology	Purpose
Community Portal	Next.js + Keycloak	Self-service governance interface
Consent Engine	Smart contracts (Hyperledger Fabric)	Automated policy enforcement
Benefit Tracker	PostgreSQL + Grafana	Track research benefits back to community
Repatriation Tools	IPFS + encrypted transfer	Secure data return to communities
Training Platform	LMS + video conferencing	Capacity building for communities

Benefit Type	Tracking Method	Distribution
Financial	Grant overhead, commercialization royalties	Direct to community fund
Knowledge	Publications, presentations	Copies provided, co-authorship offered
Capacity	Training, equipment	Tracked, reported annually
Acknowledgment	Citations, media	Monitored, alerts to community

Aspect	Specification
Parameters	70B (Phase 1), 405B (Phase 2)
Architecture	Mixture of Experts (MoE) transformer
Languages	English, French (balanced 50/50)
Context Window	128K tokens
Training Infrastructure	100% Canadian (Alliance clusters + OVHcloud)

Source	Size	Content
Canadian Scientific Literature	2M papers	NRC-CISTI, Érudit, institutional repositories
Federal Government Reports	500K docs	Open Government Portal, departmental publications
Patents	300K	CIPO Canadian patents
Tri-Council Guidelines	10K docs	NSERC, CIHR, SSHRC policies and forms
Indigenous Knowledge (with consent)	TBD	Community-approved traditional knowledge
Code	50M files	Canadian open-source projects

Capability	Use Case
Scientific Writing	Draft papers, translate to French, simplify for public
Grant Assistance	Format for Tri-Council, check eligibility, suggest reviewers
Data Discovery	Natural language queries to NORAI catalog
Code Generation	Scientific Python, R, Julia with Canadian library awareness
Regulation Lookup	PIPEDA, TCPS2, provincial health acts
Bilingual Reasoning	Seamless EN/FR switching mid-conversation

Phase	Cluster	GPUs	Time	Cost
Pre-training	Narval + Béluga	512 A100s	3 months	\$8M
Fine-tuning	Cedar	128 A100s	2 weeks	\$500K
RLHF	OVHcloud	64 H100s	1 month	\$1M

Concern	Mitigation
Hallucination	RAG-first architecture, citation requirements
Bias	Canadian EDI training data curation, red-teaming
Misuse	Rate limiting, use case restrictions, audit logging
IP	Training data licensing tracked, opt-out respected
Aspect	Specification
Data Scale	10M+ patient records across all provinces
Privacy Model	Federated learning + differential privacy ($\epsilon=1.0$)
Network Topology	Hub-and-spoke with provincial secure enclaves
Compliance	PIPEDA, provincial health acts, TCPS2, OCAP

Network Architecture:

Genomic Analysis Pipelines:

Pipeline	Purpose	Privacy Approach
GWAS	Genome-wide association studies	Secure aggregation
Variant Calling	Identify cancer mutations	Local processing, summary stats only
Polygenic Risk	Multi-gene risk scoring	Federated model training
Pharmacogenomics	Drug response prediction	Differential privacy

Researcher Interface: Researchers define pan-Canadian studies with specified provinces, privacy budgets, and ethics approvals. Analyses run locally at each province, and results return as aggregated statistics without individual patient data leaving provincial jurisdiction.

5.6 Borealis-Scholar AI Research Agent

Objective: Open-source, bilingual AI agent for superhuman literature search and synthesis

Agent Architecture:

Capabilities:

API: The Borealis-Scholar API provides deep literature search across multiple databases (Érudit, Semantic Scholar, PubMed, NORAI Catalog), synthesis of findings into literature review sections in either language, and identification of research gaps based on user queries.

5.7 Quantum-Classical Science Bridge

Objective: First national platform integrating quantum processors with HPC for scientific workflows

Supported Quantum Approaches:

Hybrid Workflow: Researchers define materials discovery workflows specifying classical and quantum resources. The platform automatically routes quantum portions (e.g., VQE for molecular ground states) to appropriate quantum hardware while classical optimization runs on Alliance clusters.

Platform Architecture:

Quantum Advantage Tracking:

Aspect	Specification
Architecture	Multi-agent system with specialized sub-agents
Corpus	5M+ Canadian papers, 200M+ global (via APIs)
Languages	English, French (native), 50+ (via translation)
Accuracy	>95% precision on literature search (benchmarked vs. PhD researchers)

Agent	Role	Tools
Orchestrator	Query understanding, task planning	LLM reasoning
Search Agent	Multi-database literature search	Semantic Scholar, PubMed, Érudit, NORAI Catalog
Synthesis Agent	Summarize, compare, critique papers	LLM + citation graph
Citation Agent	Verify claims, check retractions	CrossRef, Retraction Watch
Writing Agent	Draft literature reviews, abstracts	LLM + style templates

Task	Time (Manual)	Time (Borealis-Scholar)
Systematic literature search	2-4 weeks	2-4 hours
Literature review draft	1-2 weeks	1-2 hours
Citation verification	Days	Minutes
Gap analysis	Weeks	Hours
Translation (EN/FR)	Days	Seconds

Aspect	Specification
Quantum Hardware	Xanadu (photonic), D-Wave (annealing), IBM Q (via partnership)
Classical HPC	Alliance clusters (Narval, Cedar, Niagara)
Hybrid Workflows	Variational algorithms, quantum simulation, optimization
Access Model	Unified API, seamless job routing

Approach	Hardware	Use Cases
Photonic quantum	Xanadu Borealis	Molecular simulation, Gaussian boson sampling
Quantum annealing	D-Wave Advantage	Optimization, scheduling, materials
Gate-based	IBM Q (partnership)	Algorithm development, error correction research
Simulation	Alliance GPUs	Large-scale quantum simulation fallback

Application	Classical Baseline	Quantum Target	Status
Molecular ground states	Hours (CCSD(T))	Minutes (VQE)	Approaching
Combinatorial optimization	NP-hard limits	Speedup on specific instances	Demonstrated
Machine learning kernels	$O(n^2)$	$O(\log n)$ potential	Research
Materials simulation	Limited accuracy	Chemical accuracy	Target

6. Technical Architecture

6.1 System Architecture Overview

6.2 Data Flow Architecture

6.3 Security Architecture

6.4 API Architecture

Endpoint	Purpose	Authentication
/v1/discover	Search federated catalog	OAuth 2.0 + institutional IdP
/v1/compute	Submit federated computation	mTLS + consent tokens
/v1/models	Borealis model inference	API keys + rate limiting
/v1/consent	Manage data access consents	Role-based + community approval
/v1/workflows	Scientific workflow execution	Institutional + audit logging

6.5 Technology Stack

Layer	Technologies	Canadian Providers
Compute	Kubernetes, Slurm, Ray	Digital Research Alliance
Storage	Delta Lake, MinIO, Ceph	OVHcloud, IBM Canada
ML/AI	PyTorch, JAX, vLLM	Cohere, Untether AI
Security	Vault, SPIFFE/SPIRE	BlackBerry, Arctic Wolf
Networking	SCION, Tailscale	CANARIE, Cybera
Observability	Prometheus, Grafana	Canadian SaaS providers

7. Five-Year Roadmap (2026-2030)

7.1 Phase 1: Foundation (2026)

Objective: Prove the model with working prototypes

Quarter	Milestone	Deliverables
Q1 2026	Platform foundation	Core infrastructure, team assembly
Q2 2026	Computome MVP	Alliance cluster integration, dashboard
Q3 2026	Federated Catalog MVP	Search across 3 federal departments
Q4 2026	OCAP Pilot	Consent-as-code with 2 Indigenous communities

Year 1 Metrics:

- 180 direct jobs created
- 3 federal data partnerships
- 2 Indigenous community pilots
- Computome serving 100+ researchers

Budget: \$280M (see Section 11 for breakdown)

7.2 Phase 2: Expansion (2027)

Objective: Scale to national reach

Quarter	Milestone	Deliverables
Q1 2027	Provincial integration	BC, Alberta, Ontario health data protocols
Q2 2027	Borealis-8B release	First Canadian science foundation model
Q3 2027	Critical Minerals pilot	AI-generated prospect maps for NRCAN
Q4 2027	PermafrostGPT v1	1-km resolution forecasts for NWT

Year 2 Metrics:

- 300 direct jobs
- 10 federal/provincial data partnerships
- 10 Indigenous community integrations
- 1,000+ active researchers

Budget: \$280M

7.3 Phase 3: Integration (2028)

Objective: Full cross-provincial federation

Quarter	Milestone	Deliverables
Q1 2028	Pan-Canadian Health	Federated cancer research across 6 provinces
Q2 2028	Borealis-70B	Multi-modal scientific reasoning
Q3 2028	Climate Twin launch	National Arctic/boreal forecasting
Q4 2028	Lab automation	TRIUMF, CLS integration

Year 3 Metrics:

- 480 direct jobs

- All provinces participating
- 50+ Indigenous communities
- 5,000+ active researchers

Budget: \$280M

7.4 Phase 4: Acceleration (2029)

Objective: Autonomous science capabilities

Quarter	Milestone	Deliverables
Q1 2029	MapleFusion	Fusion materials discovery pipeline
Q2 2029	Borealis-405B	Hypothesis generation, experiment design
Q3 2029	International pilots	Five Eyes, EU partnerships
Q4 2029	Commercial APIs	Revenue-generating services

Year 4 Metrics:

- 700 direct jobs
- First international partners
- \$50M revenue
- 10,000+ researchers

Budget: \$280M

7.5 Phase 5: Leadership (2030)

Objective: Global AI-for-science leadership

Quarter	Milestone	Deliverables
Q1 2030	Full autonomy	Closed-loop experiments
Q2 2030	Export platform	Licensing to allied nations
Q3 2030	Next-gen models	Borealis-1T planning
Q4 2030	Sustainability	Self-funding operational model

Year 5 Metrics:

- 1,000+ direct jobs
- \$150M+ revenue
- 20,000+ researchers
- Global export presence

Budget: \$280M

7.6 Total 5-Year Investment: \$1.4B

7.7 ROI Projections

Return on investment: 23x

Value Category	5-Year Impact
Research productivity	\$2B (time savings)
Critical minerals discovery	\$15B (export potential)
Health outcomes	\$5B (healthcare savings)
Climate adaptation	\$10B (disaster cost reduction)
Talent retention	\$1B (avoided brain drain)
Total projected value	\$33B+

8. Data Governance and Sovereignty

8.1 Principles

- Data Residency:** All data remains within Canadian jurisdiction
- Indigenous Data Sovereignty:** OCAP principles (Ownership, Control, Access, Possession)
- Consent-as-Code:** Machine-readable consent tokens govern all data access
- Minimal Disclosure:** Differential privacy and secure computation by default
- Audit Trail:** Immutable logs of all data access and computation

8.2 OCAP Implementation

Principle	NORAI Implementation
Ownership	Community data portals, community-controlled access
Control	Consent-as-code policies, revocable permissions
Access	Community approval workflows, benefit sharing
Possession	Data never leaves community infrastructure without consent

8.3 Compliance Framework

Regulation	Approach
PIPEDA	Privacy-by-design, consent management
Provincial Health Acts	Federated computation, no data movement
OCAP	Indigenous community governance integration
ISED Security	Canadian-controlled infrastructure only
CCCS Guidelines	Threat intelligence, incident response

9. Open Science Integration

9.1 The Problem: Fragmented Data Landscape

Canada has invested billions in open science platforms, but they remain siloed. A researcher studying climate impacts on health must navigate:

- Different authentication systems for each platform
- Incompatible data formats and metadata schemas
- No unified way to feed data into AI/ML pipelines
- Manual data wrangling consuming 40-60\

NORAI solves this with a unified API wrapper that provides a single interface to all Canadian open science data, optimized for AI model training and inference.

9.2 Canadian Open Science Platforms Inventory

Canada has over 30 major open science platforms across domains. NORAI will integrate them all:

Platform	Data Holdings	Existing API	NORAI Wrapper
CONP Portal	60+ datasets, 70+ tools, 17 institutions	DataLad, REST	<code>norai.neuro.conp</code>
C-BIG Repository (MNI)	Neurological patient data, imaging, biospecimens	LORIS API	<code>norai.neuro.cbig</code>
CBRAIN	Distributed neuroimaging compute	REST API	<code>norai.compute.cbrain</code>
Brain-CODE	Ontario Brain Institute data	Custom	<code>norai.neuro.braincode</code>
NeuroLibre	Reproducible publications	REST	<code>norai.neuro.neurolibre</code>

Neuroscience & Brain Research

Platform	Data Holdings	Existing API	NORAI Wrapper
CanDIG	Federated genomic analysis	GA4GH APIs	<code>norai.genomics.candig</code>
CP4GPH	Genomics & precision health (\$14.5M platform)	GA4GH	<code>norai.genomics.cp4gph</code>
Genome Canada	100,000+ Canadian genomes	Custom	<code>norai.genomics.gc</code>
IHEC Data Portal	7,000+ epigenomic datasets	REST	<code>norai.genomics.ihec</code>

Genomics & Precision Health

Platform	Data Holdings	Existing API	NORAI Wrapper
HDRN Canada	National dataset registry	REST	<code>norai.health.hdrn</code>
PopulationDataBC	5M residents, 40+ years longitudinal	Secure API	<code>norai.health.popdata</code>
T-CAIREM	AI-ready Ontario health data	REST	<code>norai.health.tcairem</code>
Health Data Nexus			
ICES	Ontario health services data	Secure API	<code>norai.health.ices</code>

Health Data Networks

Platform	Data Holdings	Existing API	NORAI Wrapper
Ocean Networks Canada (Oceans 3.0)	14,000+ ocean sensors, petabytes of data	REST, Python SDK	<code>norai.ocean.onc</code>
OBIS Canada	Marine biodiversity, species distribution	REST	<code>norai.ocean.obis</code>
DFO Open Data	Fisheries, oceanographic conditions	CKAN	<code>norai.ocean.dfo</code>
SLGO (St. Lawrence Global Observatory)	St. Lawrence ecosystem data	REST	<code>norai.ocean.slgo</code>

Ocean & Marine Science

Platform	Data Holdings	Existing API	NORAI Wrapper
OSDP (NR-Can/ECCC)	Environmental assessment, cumulative effects	REST	<code>norai.env.osdp</code>
CANUE	Urban environmental exposures, pan-Canadian	REST	<code>norai.env.canue</code>
ECCC Climate Data	Historical weather, climate projections	REST	<code>norai.env.climate</code>
FOSRC	Federal scientific publications	OAI-PMH	<code>norai.env.fosrc</code>

Climate & Environment

Platform	Data Holdings	Existing API	NORAI Wrapper
Polar Data Catalogue	3,000+ datasets, 3M files, RADARSAT imagery	REST	<code>norai.arctic.pdc</code>
CCIN	Cryospheric data, permafrost, sea ice	REST	<code>norai.arctic.ccin</code>
ArcticNet	Integrated Arctic monitoring	Custom	<code>norai.arctic.arcticnet</code>

Arctic & Polar Research

Physics & Big Science Facilities

Biodiversity & Ecology

Agriculture & Food

General Research Infrastructure

9.3 The NORAI Data Gateway: Unified API Wrapper

NORAI provides a single API wrapper that abstracts the complexity of 30+ platforms into a consistent interface optimized for AI/ML workflows:

9.4 API Wrapper Specifications

Core Endpoints

Data Format Conversions

Platform	Data Holdings	Existing API	NORAI Wrapper
Canadian Light Source (XASDB)	X-ray spectroscopy, 1000+ spectra	REST	<code>norai.physics.cls</code>
TRIUMF Tier-1	Particle physics, ATLAS experiment	Grid	<code>norai.physics.triumf</code>
CADC	2+ petabytes astronomy data, Hubble, JWST	TAP, REST	<code>norai.physics.cadc</code>
SNOLAB	Dark matter, neutrino experiments	Custom	<code>norai.physics.snolab</code>

Platform	Data Holdings	Existing API	NORAI Wrapper
NatureCounts	200M+ bird observations	REST	<code>norai.bio.naturecounts</code>
NatureServe Canada	Species at risk, conservation status	REST	<code>norai.bio.natureserve</code>
GBIF Canada	Global biodiversity data	REST	<code>norai.bio.gbif</code>
WildTrax (ABMI)	Wildlife monitoring, acoustic data	REST	<code>norai.bio.wildtrax</code>

Platform	Data Holdings	Existing API	NORAI Wrapper
AAFC Open Data	Agricultural science, crop data	CKAN	<code>norai.agri.aafc</code>
Canadian Soil Information Service	National soil database	REST	<code>norai.agri.cansis</code>

Platform	Data Holdings	Existing API	NORAI Wrapper
FRDR	All Canadian research data	REST	<code>norai.data.frdr</code>
Odesi	5,700+ social science datasets	REST	<code>norai.data.odesi</code>
Dataverse Canada	University research repositories	REST	<code>norai.data.dataverse</code>
Scholars Portal	Academic resources	REST	<code>norai.data.scholars</code>

Endpoint	Purpose	Example
<code>gw.discover()</code>	Federated search across all platforms	<code>gw.discover("brain tumor MRI")</code>
<code>gw.get()</code>	Retrieve dataset by ID	<code>gw.get("conp:preventad-open")</code>
<code>gw.stream()</code>	Stream large datasets in chunks	<code>gw.stream(ds, chunk_mb=100)</code>
<code>gw.to_dataloader()</code>	PyTorch/TensorFlow integration	<code>gw.to_dataloader(ds, batch=32)</code>
<code>gw.export()</code>	Export to ML-ready formats	<code>gw.export(ds, format="parquet")</code>
<code>gw.cite()</code>	Auto-generate citations	<code>gw.cite(ds, style="apa")</code>

Source Format	Target Formats	Use Case
DICOM, NIfTI	HDF5, Zarr, NumPy	Medical imaging to ML training
NetCDF, GRIB	Zarr, Parquet	Climate data to model input
VCF, BAM	Parquet, Arrow	Genomic data to ML pipelines
CSV, JSON	Parquet, Arrow	Tabular data to efficient loading
FITS	HDF5, Zarr	Astronomy to ML training

Authentication & Consent The NORAI Gateway supports federated authentication via institutional identity providers (SAML/OIDC) and consent-aware data access. When datasets require consent (e.g., Indigenous health data), the system automatically initiates the appropriate consent workflow before granting access.

9.5 Platform Adapter Examples

The NORAI Gateway simplifies access to Canadian open science platforms:

- **Ocean Networks Canada:** Instead of platform-specific API calls with custom filters, researchers use a unified query interface that returns data in their preferred format (DataFrame, DataLoader for ML)
- **CONP Portal:** Instead of requiring DataLad and git-annex setup, researchers discover neuroscience datasets with simple queries and stream directly into training pipelines
- **All Platforms:** Consistent authentication, format conversion, and ML integration across 30+ data sources

9.6 Data Propagation & Synchronization

NORAI enables seamless data propagation across the country:

9.7 Benefits for AI Model Development

Challenge	Current State	With NORAI Gateway
Data discovery	Search 30+ platforms separately	Single query across all platforms
Authentication	30+ different accounts/tokens	One NORAI token, federated auth
Data formats	Manual conversion scripts	Automatic format conversion
ML integration	Custom data loaders per source	Native PyTorch/TensorFlow integration
Consent tracking	Manual paperwork	Automated consent-as-code
Citation	Manual bibliography management	Auto-generated citations
Data updates	Manual re-download	Event-driven propagation
Reproducibility	Ad-hoc versioning	Full provenance tracking

9.8 Implementation Roadmap

Phase	Timeline	Platforms Integrated	Capabilities
Phase 1	Q2 2026	CONP, FRDR, ONC, PDC	Discovery, basic access
Phase 2	Q4 2026	CanDIG, CADC, OSDP, DFO	Streaming, format conversion
Phase 3	Q2 2027	Health platforms (with privacy)	Federated learning support
Phase 4	Q4 2027	All 30+ platforms	Full propagation, ML pipelines

9.9 Open Source Commitment

The NORAI Data Gateway will be released as open source (Apache 2.0), enabling:

- Platform operators to contribute adapters
- Researchers to self-host for sensitive data
- International partners to deploy compatible gateways

- Community-driven improvements

10. Canadian AI Ecosystem

10.1 National AI Institutes (Proposed Partnerships)

Institution	Contribution	Location
Mila	Deep learning research, talent pipeline	Montreal
Vector Institute	Healthcare AI expertise	Toronto
Amii	Reinforcement learning, industry partnerships	Edmonton

10.2 National Compute Infrastructure (Proposed Partnerships)

Organization	Contribution	Coverage
Digital Research Alliance	HPC coordination	National
Compute Ontario	Regional HPC	Ontario
Calcul Quebec	Advanced computing	Quebec
ACENET	HPC services	Atlantic
WestGrid/BC DRI	HPC resources	Western

10.3 Research Universities (Proposed Partnerships)

University	Research Focus
University of Waterloo	Quantum computing, cybersecurity
University of Toronto	Medical AI, robotics
McGill University	Neuroscience-inspired AI, climate
University of Alberta	Reinforcement learning, NLP
University of British Columbia	Computer vision, sustainable AI
Université de Montréal	Deep learning foundations
University of Calgary	Energy, geoscience AI
Dalhousie University	Ocean science, health

10.4 Federal Research Organizations (Proposed Partnerships)

10.5 Industry Ecosystem

Organization	Contribution
National Research Council Natural Resources Canada Environment and Climate Change Canada Canadian Space Agency National Defence / DRDC	Applied research, technology transfer Geological data, climate datasets Weather, environmental monitoring Earth observation, satellite data Security applications
Sector	Canadian Companies
AI/ML Cloud Cybersecurity Quantum Health Tech Geospatial Indigenous Tech	Cohere, Sanctuary AI, Untether AI, Element AI alumni OVHcloud Montreal, IBM Canada, TELUS BlackBerry/Cylance, Arctic Wolf, eSentire Xanadu, D-Wave, Photonic Inc WELL Health, Think Research, MedStack MDA, Ecopia AI, Geotab Animikii, First Nations Technology Council

11. Multi-Stakeholder Alignment

11.1 Federal Stakeholder Mapping

Stakeholder	Primary Interest	NORAI Alignment
ISED	Innovation, AI strategy, sovereignty	Canadian AI leadership, job creation
NRCan	Resources, energy, northern development	Critical minerals, permafrost, energy AI
ECCC	Climate, environment	Borealis Climate Twin, emissions modeling
PMO/PCO	Strategic positioning, reconciliation	Sovereignty narrative, Indigenous partnership
Health Canada	Health innovation	Privacy-preserving health AI
Transport Canada	Infrastructure resilience	Permafrost impacts, northern logistics
DND/CAF	Arctic security, strategic resources	Northern infrastructure, resource security
CSE/CCCS	Cybersecurity, data protection	Sovereign infrastructure, threat intelligence
NRC	Research translation	Commercialization pathway
CIRNAC	Indigenous relations	OCAP implementation, community benefits
StatsCan	National data	Federated access, privacy preservation
DRDC	Defence R&D	Dual-use applications

11.2 Provincial Alignment

11.3 Indigenous Partnership Framework

Province	Key Interest	NORAI Offering
Quebec	AI leadership, French language	Bilingual platform, Mila partnership
Ontario	Health data, tech sector	Vector partnership, health federation
Alberta	Energy, resources	Energy AI, Amii partnership
BC	Climate, health	Climate twin, health federation
Northern territories	Infrastructure, sovereignty	PermafrostGPT, Arctic focus
Atlantic	Ocean science, health	Ocean data, regional HPC
Partner Type	Engagement Model	
National organizations (ITK, AFN, MNC)	Governance advisory, policy co-development	
Regional organizations	Data sharing protocols, benefit agreements	
Individual communities	Consent-as-code pilots, capacity building	
Indigenous tech companies	Contracting, technology partnerships	

12. Funding and Economic Impact

12.1 Federal Budget Context (2024-2025)

The Canadian government has committed significant funding to AI and science infrastructure. NORAI aligns with and extends these existing commitments:

Federal Program	Commitment (5 years)	Source
AI Sovereign Compute Strategy	\$2,000M	Budget 2024
Tri-Council Grants (CIHR/NSERC/SSHRC)	\$1,800M	Budget 2024
Public AI Infrastructure	\$926M	Budget 2025
Student Scholarships	\$825M	Budget 2024
Quantum Computing Infrastructure	\$334M	Budget 2025
AI Compute Access Fund	\$300M	Budget 2024
Digital Research Alliance	\$285M	FES 2024
Total Available	\$6,470M	

12.2 NORAI Funding Alignment

NORAI requests \$1.4B over 5 years - approximately **21% of new AI/science commitments** - allocated from existing and planned federal programs:

12.3 Annual Budget Allocation

12.4 Cost Efficiency Analysis

12.5 Economic Multiplier Effects

Note: The \$33B projected value includes downstream economic impacts from research outcomes (critical minerals, health savings, climate resilience, etc.)

12.6 Job Creation by Region

12.7 Revenue Model (Post-2028)

Revenue contributes to long-term sustainability, reducing ongoing federal funding requirements by 50% by 2032.

Source	NORAI Allocation	Rationale
Public AI Infrastructure (\$926M)	\$500M	NORAI is exactly the sovereign AI infrastructure this fund targets
New Tri-Council Allocation (\$1.8B)	\$350M	19% of new grants to accelerate research productivity by 40%
Digital Research Alliance (\$285M)	\$200M	Mandate extension to include AI orchestration and governance
AI Sovereign Strategy (\$2B)	\$200M	10% for platform connecting compute infrastructure to researchers
Provincial Contributions	\$100M	QC, ON, AB, BC contribute based on researcher utilization
Industry Partnerships	\$50M	Cohere, D-Wave, Xanadu, BlackBerry in-kind and cash
Total NORAI	\$1,400M	21% of commitments → 23x ROI

Category	2026	2027	2028	2029	2030	Total
Infrastructure	\$80M	\$70M	\$60M	\$50M	\$40M	\$300M
Software Development	\$60M	\$70M	\$80M	\$70M	\$60M	\$340M
Research & Prototypes	\$70M	\$60M	\$50M	\$60M	\$70M	\$310M
Personnel & Operations	\$50M	\$60M	\$70M	\$80M	\$90M	\$350M
Partnerships	\$20M	\$20M	\$20M	\$20M	\$20M	\$100M
Annual Total	\$280M	\$280M	\$280M	\$280M	\$280M	\$1,400M

Metric	Traditional Grants	Compute Canada	NORAI (Year 1)	NORAI (Year 5)
Cost per active researcher	\$85,000	\$45,000	\$56,000	\$18,700
Research productivity gain	Baseline	+15%	+25%	+50%
ROI multiplier	4x	6x	8x	23x

Investment	Direct Value	Multiplier Effect	Total Value
Compute infrastructure	\$300M	3x	\$900M
Software development	\$340M	4x	\$1.36B
Research programs	\$310M	5x	\$1.55B
Personnel & operations	\$350M	3x	\$1.05B
Partnerships	\$100M	6x	\$600M
Total	\$1.4B	4x avg	\$5.5B direct

Region	Year 1	Year 3	Year 5
Quebec	60	150	300
Ontario	50	140	280
British Columbia	25	60	150
Alberta	25	60	120
Atlantic	15	50	100
Northern/Territories	5	20	50
Total	180	480	1,000

Revenue Stream	Year 3	Year 5
Commercial API licenses	\$10M	\$50M
Industry partnership fees	\$15M	\$40M
International licensing (Five Eyes, EU)	\$5M	\$30M
Training & certification	\$5M	\$20M
Consulting services	\$5M	\$10M
Total	\$40M	\$150M

13. Why NORAI

13.1 Differentiators vs. US Genesis

Capability	Genesis (US)	NORAI (Canada)
Indigenous governance	None	OCAP-native (world first)
Bilingual platform	No	EN/FR/Inuktitut
Provincial federation	N/A	13 jurisdictions
Export to allies	Unlikely	Five Eyes, EU ready
Open science	DOE-controlled	FAIR principles
Data sovereignty	US jurisdiction	100% Canadian

13.2 Canadian Competitive Advantages

- OCAP/Indigenous governance** - Unmatched globally, export potential
- Bilingual by design** - Exportable to Francophone nations, UN agencies
- Privacy-preserving federation** - Provincial health data accessible without centralization
- Allied trust** - Five Eyes, EU prefer Canadian over US platforms for sensitive data
- Talent pool** - World-class AI researchers (Bengio, Hinton, Sutton alumni)

13.3 Risk Mitigation Summary

Risk	Mitigation
US cloud dependency	Canadian-first infrastructure strategy
Talent competition	Competitive salaries, compelling mission
Provincial coordination	Federal coordination office, incentive alignment
Indigenous trust	Co-development from day one, benefit sharing
Technology obsolescence	Modular architecture, continuous modernization

14. Risk Assessment and Mitigation

14.1 Competitive Landscape Analysis

Cloud Platform Alternatives NORAI must differentiate from existing options. Here's how we compare:

Capability	AWS	Azure	Google	NORAI
Canadian sovereignty	US juris.	US juris.	US juris.	100% CDN
Data residency	CDN region	CDN region	Limited	Guaranteed
Indigenous governance	None	None	None	OCAP
Science-specific tools	Generic	Generic	Some ML	Purpose-built
Bilingual support	Limited	Limited	Limited	EN/FR
Research integration	None	None	None	Built-in
Cost for researchers	Commercial	Commercial	Commercial	Subsidized

Why researchers won't just use AWS/Azure:

- US cloud providers subject to CLOUD Act (US government data access)
- No integration with Canadian research workflows (CCDB, Alliance accounts)
- No OCAP compliance mechanisms
- Generic tools require significant customization for science
- Commercial pricing prohibitive for most research budgets

Initiative	Threat Level	NORAI Response
US Genesis	High	Build what Genesis cannot: OCAP, bilingual, federation
EU AI4Science	Medium	Collaborate via Five Eyes/EU channels, not compete
UK AI Research	Low	Potential partnership, similar values
China AI platforms	N/A	Non-aligned; NORAI serves as allied alternative

International AI-for-Science Competition

14.2 Technology Risks

Risk	Probability	Impact	Mitigation
Borealis models underperform vs commercial LLMs	Medium	High	Hybrid approach: Borealis for science-specific tasks, integration APIs for general LLMs
Quantum computing disrupts current approaches	Low (5yr)	High	Partnership with Xanadu/D-Wave; quantum-ready architecture
Foundation model costs continue to decline	High	Medium	Focus on federation and governance (defensible moats), not raw compute
Talent acquisition fails	Medium	High	Competitive comp, remote-first, mission-driven recruitment
Security breach	Low	Very High	CSE partnership, regular audits, bug bounty program

14.3 Execution Risks

Risk	Probability	Impact	Mitigation
Delayed federal funding approval	High	High	Phase deliverables to show value with \$50M initial tranche
Provincial governments don't participate	Medium	High	Start with willing provinces (QC, ON, BC), demonstrate value, expand
Universities reluctant to share data	High	Medium	Federated approach (data stays in place), clear value proposition
Indigenous communities distrust initiative	Medium	Very High	Co-design from day one, FNIGC partnership, benefit sharing
Key personnel departure	Medium	High	Distributed leadership, documentation, competitive retention
Scope creep	High	Medium	Strong program governance, MVP-first approach

14.4 Governance Structure

To ensure accountability and multi-stakeholder alignment, NORAI proposes the following governance:

14.5 Intellectual Property Strategy

IP Type	Ownership	Rationale
Core platform code	Open source (Apache 2.0)	Maximize adoption, enable export
Borealis model weights	Canadian government	Sovereign asset, controlled licensing
Research outputs	Researchers/institutions	Standard academic norms
Indigenous data derivatives	Communities	OCAP compliance
Commercial applications	Licensees	Revenue generation

Export Control:

- Borealis models classified as controlled technology
- Licensing to Five Eyes partners, EU under bilateral agreements
- No export to non-allied nations without Cabinet approval

14.6 Security & Threat Model

Threat	Likelihood	Mitigation
Nation-state cyber attack	High	CCCS partnership, air-gapped sensitive systems
Insider threat	Medium	Clearances for key personnel, audit logging
Supply chain compromise	Medium	Canadian-sourced hardware where possible, code audits
Data exfiltration	Low	Encryption at rest/transit, DLP tools
Service disruption	Medium	Multi-region redundancy, incident response plan

Security Certifications Target:

- CCCS IT Security Assessment (Year 1)

- SOC 2 Type II (Year 2)
- ISO 27001 (Year 2)
- Protected B capability (Year 3)

15. Addressing Stakeholder Concerns

15.1 Provincial Governments

Concern: "Why should we contribute when the federal government controls everything?"

Issue	NORAI Response
Control	Provincial representatives on Steering Committee and Advisory Council
Data sovereignty	Data physically remains in province; only metadata federated
Funding fairness	Contributions proportional to researcher utilization; benefits flow back
Health data	No centralization; federated learning preserves provincial jurisdiction
Jobs	Regional hiring requirements; proportional job distribution

Provincial Value Proposition:

Province	Specific Benefit
Quebec	Bilingual platform validates Mila investment; FR-first science AI
Ontario	Vector partnership amplified; health AI leadership
Alberta	Energy transition AI; Amii collaboration
BC	Climate/ocean science; Vancouver tech ecosystem integration
Atlantic	Ocean science hub; distributed jobs beyond Toronto/Montreal
Northern	PermafrostGPT directly serves territorial needs; Arctic sovereignty

15.2 Research Universities

Concern: "We've seen government IT projects fail. Why will this be different?"

Issue	NORAI Response
Past failures	Agile delivery with quarterly milestones; public progress tracking
Control over research	NORAI is infrastructure, not research direction; researchers choose what to study
Data ownership	Researchers retain ownership; NORAI provides tools, not mandates
Overhead burden	Single sign-on with institutional credentials; self-service portal
Competitive advantage	Early adopters get priority access; collaboration tools

University Adoption Incentives:

15.3 Industry Partners

Concern: "What's in it for us? This sounds like a government boondoggle."

Industry Participation Models:

Industry ROI Projections:

15.4 Indigenous Communities

Concern: "Governments have promised data sovereignty before and not delivered."

Indigenous Engagement Phases:

15.5 Federal Departments

Concern: "This duplicates existing investments."

De-duplication Principle: NORAI builds the connective tissue between existing investments, not parallel systems.

Incentive	Details
Compute credits	\$50K-\$500K compute grants for early adopter institutions
Co-op positions	Funded student positions for platform development
Publication support	Citation tools, data provenance, reproducibility features
Grant competitiveness	NORAI usage integrated with Tri-Council applications

Issue	NORAI Response
Commercial viability	Revenue-generating APIs by Year 3; commercial licensing
Procurement fairness	Open RFPs; Canadian-first but competitive
IP protection	Clear IP frameworks; industry retains commercial IP
Government pace	Agile delivery; industry-standard development practices
Market access	International export platform; Five Eyes/EU market entry

Model	Description	Example Companies
Infrastructure partner	Provide/operate core infrastructure	OVHcloud, IBM Canada, TELUS
Technology partner	Contribute specific capabilities	Cohere (LLMs), Xanadu (quantum), BlackBerry (security)
Solution partner	Build applications on platform	Canadian SaaS companies, consultancies
Data partner	Contribute proprietary datasets	Mining companies, health systems

Partner Type	Year 1-2	Year 3-5
Infrastructure	\$5-20M contracts	\$10-40M contracts + commercial revenue share
Technology	\$2-10M contracts	Platform revenue licensing (3-5% royalties)
Solution	Early access, co-development	Commercial market access

Issue	NORAI Response
Historical trust deficit	FNIGC and ITK partnership from governance design phase
OCAP implementation	Machine-enforceable consent; community veto power
Benefit sharing	Revenue sharing for commercial use of Indigenous data
Capacity building	Training programs, funded positions in Indigenous communities
Community control	Dedicated Indigenous Governance Circle with binding authority

Phase	Timeline	Activities
1. Relationship building	Q1-Q2 2026	Formal engagement with ITK, AFN, FNIGC; listening sessions
2. Co-design	Q3-Q4 2026	Joint design of consent-as-code; pilot community selection
3. Pilot	2027	2-3 community pilots with full OCAP compliance
4. Expansion	2028+	Community-led expansion; Indigenous tech company partnerships

Department	Existing Investment	NORAI Augmentation
ISED	AI Sovereign Compute Strategy (\$2B)	NORAI is the platform that makes compute useful for science
NRCan ECCC	Geological Survey digitization Weather/climate data systems	Critical Minerals AI analyzes existing data Borealis Climate Twin adds prediction capability
Health Canada	Health data modernization	Federated learning enables analysis without centralization
DND	Arctic sovereignty investments	PermafrostGPT supports infrastructure planning

16. Call to Action

16.1 The Choice

The Government of Canada has three realistic paths:

1. **Build from scratch** - 8-10 years, uncertain outcome, talent dispersal continues
2. **Depend on US platforms** - Sovereignty risk, data export, economic leakage
3. **Partner with Canadian industry** - Deliver results by 2027, jobs stay in Canada

We choose door #3.

16.2 Immediate Next Steps

1. **Establish NORAI Program Office** within ISED (Q1 2026)
2. **Secure Year 1 funding** (\$280M from aligned federal programs - see Section 11)
3. **Formalize partnerships** with Digital Research Alliance, Mila, Vector, Amii
4. **Launch Indigenous consultation** with ITK, AFN, FNIGC
5. **Issue RFP** for Canadian technology partners

16.3 The Ask

We invite the Government of Canada to:

- Open discussions with Canadian AI companies and research institutions
- Establish a dedicated program office for sovereign AI infrastructure
- Commit Year 1 funding (\$280M) aligned with existing federal AI/science commitments
- Set a target: **First federated Canadian science experiment by Canada Day 2026**

16.4 Contact

Semanttica Web Technologies (SWT) Inc. Montreal, Quebec, Canada

Website: norai.ca Email: hello@norai.ca

Canada does not need to catch up. Canada needs to build what only Canada can build. With NORAI, Canada leads from the True North.

Document Version 2.0 - December 2025 © 2025 Semanttica Web Technologies (SWT) Inc. All rights reserved.

References

- [1] Digital Research Alliance of Canada, “2024 Resource Allocations Competition Results,” 2024. Available: <https://www.alliancecan.ca/en/2024-resource-allocations-competition-results>
- [2] Government of Canada, “Budget 2024: Fairness for Every Generation,” April 2024. Available: <https://budget.canada.ca/2024/home-accueil-en.html>
- [3] Innovation, Science and Economic Development Canada, “Canadian Sovereign AI Compute Strategy,” December 2024. Available: <https://ised-isde.canada.ca/site/ised/en/canadian-sovereign-ai-compute-strategy>
- [4] U.S. Department of Energy, “Energy Department Launches Genesis Mission to Transform American Science and Innovation Through the AI Computing Revolution,” November 2025. Available: <https://www.energy.gov/articles/energy-department-launches-genesis-mission-transform-american-science-and-innovation>
- [5] NSERC, “Discovery Research Program Competition Results,” 2024. Available: https://www.nserc-crsng.gc.ca/nserc-crsng/fundingdecisions-decisionsfinancement/researchgrants-subventionsderecherche/index_eng.asp
- [6] Anaconda, “State of Data Science 2020,” 2020. Available: <https://www.anaconda.com/state-of-data-science-2020>
- [7] Canadian Institutes of Health Research, “Budget 2024: Message from the President,” April 2024. Available: <https://cihr-irsc.gc.ca/e/53894.html>
- [8] Government of Canada, “Government of Canada invests in 7,700 world-class researchers and projects across the country,” March 2024. Available: <https://www.canada.ca/en/innovation-science-economic-development/news/2024/03/government-of-canada-invests-in-7700-world-class-researchers-and-projects-across-the-country.html>
- [9] Argonne National Laboratory, “Energy department launches Genesis Mission to transform American science and innovation through the AI computing revolution,” November 2025. Available: <https://www.anl.gov/article/energy-department-launches-genesis-mission-transform-american-science-and-innovation-through-the-ai-computing-revolution>
- [10] NVIDIA, “NVIDIA and Oracle to Build US Department of Energy’s Largest AI Supercomputer for Scientific Discovery,” October 2025. Available: <https://nvidianews.nvidia.com/news/nvidia-oracle-us-department-of-energy-ai-supercomputer-scientific-discovery>
- [11] Government of Canada, “What We Heard: Tri-agency engagement with the research community on modernization of the federal research support system,” 2024. Available: <https://www.canada.ca/en/research-coordinating-committee/services/publications/progress-reports/2024/what-we-heard-tri-agency-engagement-with-the-research-community-on-modernization-of-the-federal-research-support-system.html>
- [12] Digital Research Alliance of Canada, “The Alliance applauds the Federal government’s launch of the Canadian Sovereign AI Compute Strategy,” December 2024. Available: <https://www.alliancecan.ca/en/latest/news/alliance-applauds-federal-governments-launch-canadian-sovereign-ai-compute-strategy>